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Error-tolerant likelihood-based match calling presents a
promising technique to accurately identify recapture events
in genetic mark-recapture studies by combining probabilities
of latent genotypes and probabilities of observed genotypes,
which may contain genotyping errors. Combined with
clustering algorithms to group samples into sets of recaptures
based upon pairwise match calls, these tools can be
used to reconstruct accurate capture histories for mark—
recapture modelling. Here, we assess the performance of
a recently introduced error-tolerant likelihood-based match-
calling model and sample clustering algorithm for genetic
mark-recapture studies. We assessed both biallelic (i.e.
single nucleotide polymorphisms; SNP) and multiallelic
(i.e. microsatellite; MSAT) markers using a combination of
simulation analyses and case study data on Pacific walrus
(Odobenus rosmarus divergens) and fishers (Pekania pennanti).
A novel two-stage clustering approach is demonstrated for
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genetic mark-recapture applications. First, repeat captures within a sampling occasion are identified. n

Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching
protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic
mark-recapture studies. Moderately sized SNP (64+) and MSAT (10-15) panels produced accurate
match calls for recaptures and accurate non-match calls for samples from closely related individuals
in the face of low to moderate genotyping error. Furthermore, matching performance remained stable
or increased as the number of genetic markers increased, genotyping error notwithstanding.

1. Introduction

While the number and breadth of genetic mark-recapture applications is increasing, challenges in
constructing capture histories from multilocus genotypes remain [1]. Genotyping errors are common
with low-quality, low-quantity DNA samples from non-invasive genetic mark-recapture studies [2] and
can result in missed recapture events which inflate mark-recapture abundance estimates [3]. Genetic
marker panels with low information content can produce false recapture events, potentially biasing
abundance estimates low [4]. The discriminating power of genetic marker panels can be increased with
additional loci (with additional development and genotyping costs); however, larger panels increase the
probability of additional genotyping error events. A suite of approaches have been suggested to deal with
genotyping error in constructing capture histories for genetic mark-recapture studies. Broadly, these
fall into two categories: (i) remove genotyping errors from the data and (ii) develop sample matching
protocols that are robust to genotyping errors. Considerable guidance exists on removing genotyping
errors from data, including careful sample preparation [5], replicate genotyping through a multitubes
approach [6-8] and filtering out low-quality genotype calls for exclusion or additional genotyping [9].

More recently, error-tolerant matching approaches, which can accommodate low levels of genotyping
error while producing accurate match calls, have shown promise. Two analogous error-tolerant
likelihood-based sample matching protocols were introduced by Wang [10-12] and Kalinowski
et al. [13]. Both approaches use the same structure in combining probabilities of obtaining a
pair of true underlying, or latent, genotypes given population allele frequencies and hypotheses
about the relationship state between the two samples (e.g. samples from full siblings or unrelated
individuals), coupled with the probability of observing the sample genotypes given a genotyping error
model and genotyping error rates. The two approaches differ in the manner in which genotyping
error is modelled and in the clustering algorithms implemented to group samples into putative
same-individual sets.

Likelihood-based matching has several benefits. First, the approach is based upon sound probability
theory describing the frequency of genotypes in a population (e.g. [14]). Second, the approach allows
for statistical inference about match calls in the presence of genotyping errors. Finally, match calling
when comparing pairs of observed genotypes is objective and based upon the strength of evidence
metrics, whereas some other non-likelihood-based approaches use heuristic matching criteria which
require tuning (e.g. [3,15]). The adoption of error-tolerant likelihood-based match calling and sample
clustering approaches, however, has been slow in genetic mark-recapture applications, probably owing
to their high complexity and high computation requirements (see below). While earlier work laid a
foundation for error-tolerant likelihood-based match calling and sample clustering [10-13], additional
practical guidance on implementing the approach for genetic mark-recapture studies and assessing
what are requirements for genetic marker panel size and quality (allelic richness, genotyping error levels)
necessary to accurately reconstruct capture histories for mark-recapture modelling may facilitate broader
use of these tools.

Kalinowski ef al. [13] introduced and explored the performance of an error-tolerant likelihood-based
match calling model specified with a detailed genotyping error model for microsatellite (MSAT) genetic
markers. In addition to likelihood-based sample matching, they introduced a likelihood model for
estimating parameters of the genotyping error model from sample data. Simulation results in this work
explored the combined performance of the match calling model under the specified MSAT error model,
the genotyping error estimation model and a proposed sample clustering algorithm. Wang ([12], building
from Wang [10,11]), explored performance of an analogous error-tolerant likelihood-based match calling
model as that of Kalinowski et al. [13], specifying a different MSAT-specific genotyping error model
than from [13] and asserting genotyping error rates as opposed to estimating them from sample data.
Wang [12] implemented a sample clustering algorithm which first identifies sibling clusters and then
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identifies duplicate multilocus genotypes, i.e. recapture events, within sibling clusters; this routine was
made available in the software package COLONY (written by J. Wang, available at www.zsl.org/science/
software/colony; therein, refer to the option to identify ‘clones’ from multilocus genotype samples for
the purposes of identifying recapture events from genetic mark-recapture samples). Performance of the
combined match calling model and clustering algorithms was assessed under a suite of simulations
examining the effect of marker panel size and quality (allelic richness), error rates and misspecification
of error rates. These earlier works provided the groundwork for implementing error-tolerant likelihood-
based match calling and sample clustering for genetic mark-recapture studies; however, testing
performance results were presented combining multiple features of the protocols and for a limited
set of simulation scenarios. For example, Kalinowski et al. [13] and Wang [12] presented the combined
performance of both the match calling model and the clustering algorithms with predefined multilocus
genotypes sample sizes, which combined mixes of related and unrelated individuals. Furthermore, the
accuracy of reconstructing recaptures was assessed by evaluating the combined match and non-match
call performance for simulated sample sets.

In this article, we expand upon these earlier efforts [10-13] to provide guidance on using error-tolerant
likelihood-based sample clustering algorithms for designing and analysing genetic mark-recapture
studies. A combination of simulation trials and case studies on Pacific walrus (Odobenus rosmarus
divergens) and fishers (Pekania pennanti) are analysed with the objective of providing guidance on the
number of markers, allelic richness and genotyping error rates which are acceptable in achieving accurate
recapture histories for genetic mark-recapture studies. We focus simulation testing performance at the
level of the error-tolerant likelihood-based match calling model. Results for both MSAT and single
nucleotide polymorphism (SNP) genotypes are assessed for unrelated or full-sibling relationship states
in isolation, and for match and non-match call accuracy separately. A distinct genotyping error model is
proposed for SNP genotypes, and we explore sensitivity of the match calling model to errors in model
input parameters, including misspecification of allele frequencies and genotyping error rates. Second, we
develop a two-stage genotype clustering protocol designed to accommodate typical sampling scenarios
from genetic mark-recapture studies, whereby repeated captures may occur within sampling occasions.
Combining match calling performance testing with the proposed sample-clustering algorithms, analysts
can use results herein to anticipate recapture reconstruction accuracy for genetic mark-recapture
sampling scenarios specific to their study of interest. Finally, we provide example code written in the R
statistical programming environment [16] to implement the error-tolerant likelihood-based match calling
and two-stage sample clustering protocol. Simulations indicate that the error-tolerant likelihood-based
match calling model can accommodate moderate genotyping error while still making accurate match
calls with reasonably sized SNP and MSAT panels.

2. Material and methods

All simulation data generation, performance testing and case study recapture reconstruction analyses
were conducted with custom scripts written in R.

2.1. Error-tolerant likelihood-based match calling model and sample clustering algorithm

The error-tolerant likelihood-based match calling approach analysed here follows the matching
probability model presented in Wang [10-12] and Kalinowski et al. [13]; however, the sample clustering
algorithm we implement to group samples into putative same-individual sets differs from both the above
approaches, and we implement separate genotyping error models for SNP and MSAT markers. A brief
description of the approach is outlined here; complete equations and sample clustering algorithm detail
are provided in the electronic supplementary material.

The match calling model operates on pairwise comparisons of multilocus genotypes and uses a
strength-of-evidence approach to determine a match. The match calling model calculates the likelihood
of observing a pair of multilocus genotypes given a hypothesis about the relationship state from which
the samples were derived, i.e. samples came from the same individual in which case the pair is a match,
or the samples came from two different individuals. The model for the probability of observing a given
multilocus genotype incorporates both the probability of a latent, true underlying genotype, calculated
from population allele frequencies, as well as the probability of observing the sample genotypes given a
genotyping error model. To discriminate recapture events from unique specimens, a clustering algorithm
is specified to examine pairwise comparisons of samples, assess whether a match call is supported using
the match calling model and group samples into same-individual sets as warranted.
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The framework for identifying recaptures using error-tolerant likelihood-based match calling and
sample clustering encompasses four distinct components. First, a model for genotyping error is defined
and used to calculate the probability of observing a diploid genotype at locus j, gj, given a proposed
true latent genotype, k]-. We implemented an MSAT genotyping error model following Wang [10], which
specifies two types of error: allelic dropouts and mistypes (also referred to as ‘false alleles’). Allelic
dropouts occur when heterozygote genotypes are read as homozygotes, typically attributed to greater
amplification efficiency of a smaller allele over a larger allele during polymerase chain reaction (PCR).
Mistype errors have several possible causes and can involve a miscalled allele in either homozygote or
heterozygote genotypes. Biallelic SNPs consist of a single base pair polymorphism and we implemented
a simple generic genotyping error model whereby alleles are either called correctly or not in a binomial
probability framework (electronic supplementary material, S1).

Second, a model is proposed for the probability of observing a pair of latent multilocus genotypes
(unlinked loci, codominant alleles, random mating) given a proposed relationship state and set of
population allele frequencies, following standard formulae for relatedness analysis (e.g. [14]).

Third, the joint probability of observing the pair of sample multilocus genotypes, G1 and G,
incorporating both population allele frequencies and genotyping error are used to calculate the
likelihood of a hypothesized relationship state, R, (e.g. R € {SI, U, FS, PO}, where U=samples from
unrelated individuals, FS =samples from a pair of full siblings, PO =samples from a parent offspring
pair and SI=a pair of samples from the same individual), L(R(G1, G2)). The strength of evidence for
the SI relationship state, i.e. a match call, is assessed by calculating the ratio of the likelihood of the SI
relationship state being true against the maximum-likelihood non-match relationship state:

B L(R(G1, Ga) = SI)
-~ max{L(R(G1, G2) = U), L(R(G1, G2) = FS), L(R(G1, G2) =PO)}

If A>1.0, then a match call is made; else the samples are inferred to have come from different
individuals. We specified a match calling probability model as presented by Kalinowski et al. [13] which
accommodates multiple recaptures of an individual within a set of samples, in which case likelihoods
are evaluated for pairs of compared sets of genotypes (electronic supplementary material, S1).

Finally, a sample clustering algorithm is proposed which groups samples into sets with genotypes
from the same individual. We implement a two-stage sample clustering approach to identify recapture
events with the error-tolerant likelihood-based match calling model for genetic mark-recapture studies.
In stage-one clustering, an algorithm is implemented to identify repeated captures within a single
sampling occasion. Given a list of size 11 genotype sets from a sampling occasion, S1 =(Gy, ...,Gp,)
ordered with an indexing sequence of z=(1, ... , ny):

Step 1: Define S =S with each sample in S; as a singleton set.

Step 2: Compare the first genotype set in the list, G1, against all other genotype sets in S, G, for z>1,
and combine sets into G as a match when A > 1.0.

Step 3: Compare the next genotype in sequence, e.g. G, against all other remaining sets in S, G, for
z > 2, combining sets as a match when A > 1.0, and repeat until the last genotype set in sequence
is reached, generating an updated set of genotypes, S=(Gy,... ,,1) where 717 <nj.

Step 4: Repeat Steps 2-3 with S = §; if no set memberships change, stop; else repeat this step.

After completion of this algorithm, sets within S with two or more genotypes indicate repeated
captures within a sampling occasion and can be condensed into a single unique multilocus genotype
(possibly reconstructing consensus genotypes from repeated captures of the same individual). Stage-one
clustering would be implemented for each sampling occasion in the mark-recapture study. Subsequently,
a second-stage algorithm is implemented to identify recaptures across lists of unique individuals for each
sampling occasion, S1= (G11,.-+, Gy,3,) and Sy = (G215 Goy):

Step 1: Compare the first genotype set in sequence in Sy against all genotype sets in S, and combine sets
as a match, when A > 1.0. Sets from S, which are combined into a given set in Sy are removed
from S,.

Step 2: Compare the next genotype in sequence in S; against all remaining sets in S combining sets as
a match when A > 1.0 as in Step 1, and repeat until the last genotype set in sequence in S; is
compared against all remaining sets in S, generating updated sets of genotypes, S} and S3.
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After this second-stage clustering, sets in S} with two genotypes indicate recapture events; singleton
sets in S} and S} represent unique individuals not recaptured across the pair of compared sampling
occasions. Note that this version of the clustering algorithm assumes the starting sample sets S; and S
are made up solely of unique individuals. In this case, any given individual can only be recaptured once
across a pair of compared sampling occasions’ lists of unique genotypes, and only a single iteration of
the algorithm is necessary. Stage-two clustering would be implemented for each pairwise comparison
of sampling occasions within the mark-recapture study and results ultimately translated to individual
capture histories. Electronic supplementary material, S2 and S3 provide example R code to implement
the error-tolerant likelihood-based match calling model and sample clustering algorithms.

2.2. Simulation scenarios

Artificial MSAT and SNP multilocus diploid genotypes with codominant alleles were simulated under
a range of marker set sizes, allelic richness, allele frequency specifications and genotyping error rates
expected to span most genetic mark-recapture scenarios (table 1; see electronic supplementary material,
52 and S3 for example R code). Locus-specific latent genotypes were generated by randomly sampling
with probability equal to a set of specified allele frequencies (i.e. assuming random mating). Full-sibling
pairs were simulated by first generating two parents and then randomly sampling from each parent’s
respective alleles to generate two progeny. Allele frequencies for MSAT genotypes were modelled as
uniform across all alleles and equal to 1/4; for 4; alleles at locus j.

‘Observed’ genotypes containing genotyping error were generated from latent genotypes following
either an MSAT- or SNP-specific error model (electronic supplementary material, S1). Locus-level
error rates were first converted to allele-level error rates as: allele_rate=1 — /1 — locus_rate . For
MSAT genotypes, allelic dropouts, which can only occur for latent heterozygous genotypes, were
simulated first, prior to any false allele error. Under the Wang [10] MSAT error model, P(dropout) =1 —
P(no dropout) =2p1/(1 + p1), where p1 is the per-allele dropout rate. Dropout events for heterozygotes
were modelled as binomial trials with the ‘success’” probability equal to 2p1/(1+ p1). Subsequent to
opportunity for dropouts, false allele events were modelled as binomial trials for each allele copy at a
locus independently following the per-allele mistype rate, po. Observed SNP genotypes were modelled
following the generic typing error model outlined above where error events are treated as binomial
trials for each allele copy at a locus separately following a per-allele rate, y (electronic supplementary
material, S1).

2.3. Match calling performance testing

Errors in clustering genetic mark-recapture samples into recaptures or unique specimens derive from
errors in pairwise match calling. Thus, performance testing focused on the match calling model. For
base case performance testing of the match calling model, input parameters for error rates and allele
frequencies were equivalent to those from which data were simulated. We also examined a smaller
suite of challenge trials to test the robustness of the match calling model to misspecifications in
genotyping error rates and allele frequencies. Finally, we examined scenarios to test whether inclusion
of poor-quality loci, i.e. with high genotyping error rates, would degrade match calling performance
(table 1).

For each challenge trial, we simulated 10000 comparisons for SNP data and 1000 comparisons for
MSAT data (higher computation cost) of a pair of multilocus genotypes for data generated under each
of three relationship states: SI, U and FS. Thus, performance was measured as the rate at which a given
pair was correctly called a match (or non-match). Because genetic mark-recapture applications differ
widely, we chose to assess match call error rates at the level of pairwise comparisons as this allows for
generalization of performance outcomes to any sample matching scenario. For example, some studies
may find a full-sibling false recapture error rate of 5%, where 1 in 20 times a pair of samples from
two full siblings will be erroneously called a match, acceptable if the probability of actually sampling
a pair of full siblings within the study population is extremely low. Owing to the high computation
time required to implement the error-tolerant likelihood-based match calling model, we only considered
SI, FS and U relationship states during simulation testing (i.e. excluding PO relationship state
simulations).
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2.4. Case studies

We assessed the error-tolerant likelihood-based matching approach and associated clustering algorithm
to identify recaptures for both an SNP and MSAT case study. We first removed repeated captures of
individuals within each sampling occasion using the stage-one sample clustering algorithm and then
subsequently assessed recaptures across sampling occasions with the stage-two clustering algorithm.
A total of four relationship states were assessed during clustering: R € {SI, U, FS, PO} (electronic
supplementary material, S2 and S3).

SNP case study data utilize pilot sampling for a genetic mark-recapture study implemented by the US
Fish and Wildlife Service to assess the status of the Pacific walrus. Tissue samples were collected using
dart-based biopsies, representing high-quality and high-quantity DNA samples. Data are available for
64 biallelic SNP markers, with pilot study samples from 2013 (initial ‘tag release” sampling occasion) and
2014 (recapture sampling occasion). SNP genotyping was conducted by the US Fish and Wildlife Service
Conservation Genetics Laboratory. Samples were run on four sets of TagMan® OpenArray® Genotyping
Plates, format 16, using the QuantStudio™ 12 K Flex Real-Time PCR System with the OpenArray® Block
utilizing the Accufill™ System. One putative SNP failed, exhibiting a single allele, and was purged
during subsequent analysis; thus sample matching was implemented with a maximum of 63 SNPs
(electronic supplementary material, table S4.1). Approximately 100 individual samples were replicate
genotyped three times (total replication numbers varied due to random PCR failures) and compared
against per-sample consensus genotype calls to calculate per-locus generic genotyping error rates. Locus-
level genotyping error-rate estimates varied across loci, some exhibiting zero errors. We implemented a
1% minimum locus-level genotyping error rate threshold during likelihood-based match calling and
sample clustering, setting error rates to the empirically estimated values for loci with more than 1%
error rates.

MSAT case study data are from two sampling occasions (henceforth referred to as occasions A and B)
from a 2014 fisher genetic mark-recapture study in New York, USA [17]. Tissue was collected from
follicles of hair samples collected from barbed wire snares, representing relatively lower quality and
quantity DNA samples. Data are available for nine MSAT loci with a range of allelic dropout and
false allele error rates (electronic supplementary material, table S4.2). Molecular details for MSAT data
collection are described in electronic supplementary material, appendix S2 of Linden et al. [17]. Briefly,
fluorescently labelled MSAT amplicons were analysed on an ABI 3730x] genetic analyser (Applied
Biosystems) in the Cornell Institute of Biotechnology. Automated calling of genotypes was done with
Genemapper 4.0 (Applied Biosystems) followed by manual checking of call accuracy. Locus-specific
genotyping error rates were calculated using three replicate genotypes from each study sample (without
regard to genotype quality; see [18]), estimating allelic dropout and false allele rates as per [19]. Samples
with more than three loci with missing genotype calls were dropped from the sample match calling and
clustering analysis, and a minimum locus-level genotyping error rate threshold of 0.5% for false allele
events was imposed in specifying the match calling model.

3. Results

3.1. Simulation scenarios: base case results

The accuracy of SNP match calls to infer recaptures (R=SI; perfect accuracy indicated by match
rate =1.0) and non-match calls to identify unique specimens (R € {U, FS}; perfect accuracy indicated by
match rate = 0.0) improved with increasing numbers of loci (figure 1; electronic supplementary material,
table S5.1). Accuracy increased with increasing minor allele frequencies; however, these improvements
were marginal when compared with gains from increasing the number of loci. Non-match call accuracy
was consistently strong when considering samples from unrelated individuals (figure 1, right column),
where a 48-SNP panel produced perfect (non-match) call accuracy up to a very high 10% per-locus SNP
genotyping error rate ([20,21]; electronic supplementary material, table S5.1). Non-match call accuracy
for pairs simulated from full siblings was lower; however, false match calls for pairs of samples from full
siblings occurred at less than a 1% rate for 64 SNP panels with up to a high 10% per-locus genotyping
error rate. Finally, match call accuracy for recaptures (i.e. pairs of samples with R = SI) was more sensitive
to genotyping error rates than was non-match call accuracy (i.e. pairs of samples with R € {U, FS}). At the
lower simulated per-locus error rates—of the order of 2% or less—panels of 48 SNPs or larger produced
greater than 99.5% accuracy. At very high genotyping error rates in excess of 10% per locus, larger panels
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Figure 1. Simulation results of the error-tolerant likelihood-based match calling model for biallelic (SNP) markers. Plots are organized by
minor allele frequency (MAF) along rows and true relationship state along columns. Results are the proportion of comparisons of 10 000
pairs of simulated samples from a given relationship state, minor allele frequency, number of loci and per-locus genotyping error rate that
are called a match. Pairs of genotypes simulated from the ‘same individual’ relationship represent recapture events, for which match call
rates 0f 1.00 are perfectly accurate and less than 1.00 indicate that missed recapture events occur; pairs of genotypes simulated from the
“full sibling” or ‘unrelated' relationship states represent samples from different individuals, for which match call rates of 0.00 are perfectly
accurate and more than 0.00 indicate that false recapture events occur. Note that y-axis values differ across columns.

of the order of 128 SNPs (or greater) may be necessary to achieve match call accuracy of 95% or better
(figure 1, left column).

MSAT markers exhibited high match call accuracy with moderately sized marker panels, although
attaining very high non-match call accuracy for full-sibling pairs required somewhat larger panels of
the order of 15 loci or greater (figure 2, middle column; electronic supplementary material, table S5.2).
Similarly to simulations with biallelic SNP markers, MSAT markers demonstrated high non-match call
accuracy for pairs of samples from unrelated individuals across the suite of marker panel and error
rates simulated here (figure 2, right column). Increasing the number of equal-frequency alleles per locus
improved non-match R € {U, FS} and match call accuracy (R = SI); however, inclusion of additional loci
had a more marked effect on accuracy. Finally, match call accuracy for pairs of samples from the same
individual was somewhat less sensitive to genotyping error than for SNP panels, where MSAT match call
accuracy for recaptures under 20% allelic dropout and 5% false allele per-locus error rates was greater
than 95% for a small MSAT panel of five loci each with 10 equal-frequency alleles (match call rate = 0.966;
figure 2, left column; electronic supplementary material, table S5.2).

3.2. Simulation scenarios: sensitivity analyses

Match call accuracy for both SNP and MSAT markers was robust to substantial deviations in allele
frequency estimates from true latent frequencies, with both under- or overestimation of allele frequencies
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Figure 2. Simulation results of the error-tolerant likelihood-based match calling model for multiallelic (MSAT) markers. Plots are
organized by the number of (equal frequency) alleles per locus, a;, along rows, and true relationship state along columns. Results are
the proportion of comparisons of 1000 pairs of simulated samples from a given relationship state, number of loci, number of alleles and
per-locus genotyping error rate that are called a match. Pairs of genotypes simulated from the ‘same individual’ relationship represent
recapture events, for which match call rates of 1.00 are perfectly accurate and less than 1.00 indicate that missed recapture events occur;
pairs of genotypes simulated from the ‘full sibling’ or ‘unrelated’ relationship states represent samples from different individuals, for
which match call rates of 0.00 are perfectly accurate and more than 0.00 indicate that false recapture events occur. Note that y-axis
values differ across columns.

producing comparable and minor deviations from base case matching rates (tables 2 and 3). Furthermore,
non-match calls when faced with samples from unrelated individuals remained error free across
sensitivity tests. Sample matching was robust to inclusion of high-error rate loci, where match and
non-match call accuracy actually improved marginally with the addition of poor-quality loci (per-locus
generic typing error rate of 25% for SNP markers; 20% allelic dropout and 5% false allele rates for MSAT
markers; tables 2 and 3).

The greatest sensitivities of the error-tolerant likelihood-based match calling model arose when
genotyping error rates were systematically underestimated, particularly for biallelic SNPs. The rate
of correct match calls when faced with recapture samples for SNPs was biased strongly low when
true genotyping error rates were high and specified error rates were low (table 2). The degree of
impact from genotyping error rate misspecification was attenuated with larger SNP marker panels;
however, downward bias in the match call rate for recapture samples persisted for 64 loci with 30%
minor allele frequency when error rates were specified low (i.e. latent locus-level error rate =10%;
specified =5%). MSAT markers also showed greatest sensitivity in match call accuracy in cases where
genotyping error rates were specified lower than latent levels; however, the degree of impact on matching
performance for recaptures was considerably less severe than for SNPs when latent error rates were
high and specified rates were underestimated by 50% (table 3). Both marker types were robust to
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Table 2. Match calling sensitivity analysis for SNPs.

match call rate (difference from exact)®

scenario?
p overestimated, 48 loci, 1% latent genotyping error 0.0000 (—0.0007)  0.9999 (0.0001) 0.0000 (0.0000)

0.0262 (0.0237) 0.9956 (0.0431) 0.0000 (0.0000)

0.0000(—0.0001)  0.9978 (—0.0020)  0.0000 (0.0000)

0.0000 (0.0000)  0.9995 (—0.0005)  0.0000 (0.0000)

0.0002 (—0.0062)  0.6515 (—0.2807)  0.0000 (0.0000)

—~ o —

3See table 1for additional scenario details. p = vector of allele frequencies; > = per-locus genotyping error rate.

bMatch rate call discrepancies are calculated as (scenario specific match rate — match rate from exactly specified input parameters); zero differences are
bolded, negative differences are italicized. See table 1for additional scenario details.

CResults are compared against a 48 SNP panel with 1% genotyping error.

overestimation of genotyping error rates in terms of match calls for recapture pairs and non-match calls
for distinct individuals. Together, these results suggest that conservative treatment of genotyping error
rate specification may be warranted in order to avoid missed recaptures associated with underestimated
genotyping error rates.

3.3. (ase studies

Locus-level genotyping error rates for the Pacific walrus SNP case study data were in the range of
0.0-5.1% with all but eight of the 63 loci exhibiting error rates less than 1.0%, and 29 of 63 loci
exhibiting 0 errors in replicate sampling (electronic supplementary material, table S4.1). Minor allele
frequencies ranged from 0.493 to 0.124 (electronic supplementary material, table S4.1). The total panel
(63 SNPs) probability of identity was 2.0 x 1072 for unrelated individuals and 3.3 x 10~* for full
siblings. Repeated capture numbers within sampling occasions as assessed by the stage-one sample-
clustering algorithm varied by a small number of individuals when sets of 32 (or 31) loci were used to
make match calls, but stabilized when 47 or 63 SNP panels were utilized (table 4). All combinations of
SNP panels ranging from 31 to 63 total loci identified the same set of eight recaptures across sampling
occasions. The total number of loci in common with positive genotype calls (i.e. PCR amplification was
successful and produced an unambiguous genotype call) for recapture samples varied in the range of
27-32 for 32-SNP panels, 4347 for 47-SNP panels and 58-63 for 63-SNP panels; three of the recapture
pairs had a single discrepant locus, whereas all others matched on all common positive loci (table 4).
Likelihood ratios were large for recaptures and ranged from A =1.12 x 10'> to A =7.51 x 10'3.
Locus-level genotyping error rates for the fisher MSAT case study were in the range of 8.0-17.0% for
allelic dropout events and 0.6-2.0% for false allele mistyping events (electronic supplementary material,
table 54.2). Loci had five to eight alleles, generally with two to three common alleles and several rare,
with a total marker panel probability of identity of 9.6 x 1078 for unrelated individuals and 1.0 x 1073
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Table 3. Match calling sensitivity analysis for MSATs.

match call rate (difference from exact)®

scenario®
p specified incorrectly, 10 loci, ADO = 0.05, FA = 0.02 0.006 (0.002) 0.994 (0.001) 0.000 (0.000)
pspec| o correctly 15Ioc|ADO= b 5FA=002 ................................... Vot (0001)0 o (0001) ............. 0000 (0000)
pspecified incortectly, 10loci, ADO = 020, A =005 | 0.044(0.019)  099(0.005  0.000(0.000)
pspeq o correctly 15Ioc|ADO= . 20FA= e st (0003)0 e (0 S ) ............. 0000 (0000)
ertor rates overestimated, 10 lodi latent ADO = 0.05,FA=0.02 0.010(0.006)  0.999(0.006)  0.000(0.000)
ertor rates overestimated, 15 loci latent ADO = 0.05, FA =002 0.000(—0002)  1000(0.002)  0.000(0.000)
“ertor rates overestimated, 10 loci latent ADO = 020, A=005 0090(0.065  0998(0.0)  0.000(0.000)
ertor rates overestimated, 15 loci latent AD0 = 0.0, FA=0.05 0057(0.049)  1000(0.003  0.000(0.000)
ertor rates underestimated, 10lodi, latent ADO = 0.05, FA=002 | 0.000(—0004) ~ 0.977(—0.016)  0.000(0.000)
ertor rates underestimated, 15 lodi, latent ADO = 0.05, FA=0.02 | 0.000(—0.00)  0.994(—0004)  0.000(0.000)
ertor rates underestimated, 10 loci latent AD0 = 0.20, FA=0.05 0.006(—0.019)  0912(—007)  0.000(0.000)
ertor rates underestimated, 5 lodi, latent ADO = 020, FA=005 0.001(—0007)  0.962(—0.035)  0.000(0.000)

high-error loci included, 10 loci with ADO = 0.05 and FA = 0.02, 5 loci 0.007(—0.003) 0.999 (0.006) 0.000 (0.000)
with ADO = 0.20 and FA = 0.05°

2All simulations specify loci with 10 alleles. See table 1for additional scenario details. p = vector of allele frequencies.

bMatch rate call discrepancies are calculated as (scenario specific match rate — match rate from exactly specified input parameters); zero differences are
bolded, negative differences are italicized.

CResults are compared against a 10 loci panel with ADO = 0.05 and FA = 0.02.

Table 4. Sample clustering results for Pacific walrus SNP multilocus genotype data®.

between range in common maximum number of
within occasion  within occasion  occasion positive PCR loci for discrepancies observed
no. loci recaptures 2013 recaptures2014  recaptures® matches in matches
Jl(setsTand2) 231 340 8 27-31 1
32(sets1and3) 231 343 8 27-32 1
31(sets2and3) 237 347 8 27-31 1
47 (sets1-3) 231 336 8 43-47 1
63 (sets 1-4) 231 336 8 58-63 1

3SNPs are grouped into sets of 16; one locus in set 2 manifested a single allele and was purged from the analysis. A locus-level genotyping error floor
of 1% was imposed for all loci during the likelihood-based error-tolerant matching protocol (see electronic supplementary material, table S4.1 for
empirical rates).

bAIl SNP set combinations identified the same individuals as recaptures across sampling occasions.

for full siblings. Repeated captures within sampling occasions as assessed by the stage-one sample
clustering algorithm occurred at a similar rate for both periods, generating 18 repeat captures during
occasion A (18/95=18.9% repeat capture rate) and 23 during occasion B (23/105 =20.9% repeat capture
rate). A total of 18 recaptures were identified across the two sampling occasions. Because the marker
panel contained relatively low discriminating information and non-negligible genotyping error rates,
we reran the clustering algorithm across the sampling occasions (‘stage-two’ clustering, see Material and
methods) two additional times after permuting the order of samples and found the same recapture events
identified in all cases. Similarly to the walrus case study, not all recapture pairs had a full complement of
loci with positive genotype calls, with the number of positive loci in common ranging from six to nine
for fisher recaptures. Nine recapture pairs had one or more discrepant genotype calls. Likelihood ratios
for recaptures were much lower for fisher MSAT data than for walrus SNP data, ranging from A =6.1 to
A=74987.
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4. Discussion

The error-tolerant likelihood-based match calling model performed well in simulation trials when
specified allele frequencies and genotyping error rates matched those from data generation. In empirical
applications, allele frequencies and genotyping error rates are estimated from samples of the population
of interest and thus contain estimation errors. Sensitivity analysis simulations demonstrate robustness
of the error-tolerant likelihood-based match calling model to errors in specifying allele frequencies.
Match calling performance was also found to be robust to small genotyping error rate misspecifications;
however, large genotyping error rate misspecifications were indicated to be more problematic. Thus,
it may be advantageous to conduct ample replicate genotyping to establish accurate genotyping error
rates, as well as to remain conservative in specifying error rates. In particular, zero genotyping error rate
estimates, which may occur when true genotyping error rates are low and replication for the purposes
of estimating error rates is also low, provide strong information to the match calling model which may
not reflect reality.

A primary advantage of the error-tolerant likelihood-based matching approach is that a strength of
evidence approach is used to assess matches in the face of possible genotyping errors. For example, a
number of recaptures in both case studies had at least one discrepant locus in a match call, illustrating
how genotyping error can persist even after conventional measures are taken to minimize it. An
important feature of this approach is that matching performance always remained stable or improved
as the genetic marker panel size increased, even if additional loci were error-prone. Many studies filter
out error-prone samples in order to avoid passing genotyping errors through to sample matching. While
quality control and good laboratory practices are essential for any successful genetic mark-recapture
study (e.g. [5]), error-tolerant matching protocols such as tested here may make it possible to apply
less stringent filters in the laboratory and include more of the collected samples in the final sample-
matching analysis.

Based upon simulation results, high accuracy match and non-match calls can be reached with
reasonably sized marker panels (e.g. 644+ SNPs, 10-15 MSATs), ultimately leading to accurate grouping
of samples into recapture sets during sample clustering. However, even with low matching error rates,
analysts may wish to remain conservative in the choice of panel size because the clustering algorithm
requires that all pairwise combinations between samples be assessed in making match calls. The total
number of pairwise comparisons is the appropriate number of match call comparisons for a given
relationship state to consider when targeting match call error rates. For example, under the clustering
algorithm proposed here, the number of pairwise comparisons made in assessing recaptures across
two occasions each with 500 samples is 500> = 250000, and thus one would need to achieve a generic
match call error rate below 1/250 000 = 4.0 x 10~ to avoid making at least one expected match call error.
Fortunately, simulations suggest that the error-tolerant likelihood-based matching protocol yielded near-
perfect accuracy in making non-match calls for unrelated individuals—a relationship state that probably
characterizes most pairwise comparisons from a wide range of populations to be assessed with genetic
mark-recapture—at reasonably sized marker panels. To illustrate this point, consider the artificial case
of a single sampling occasion sample size of 500 individuals made up of 250 pairs of full siblings. In total,
there are (°)°) = 124,750 different pairwise comparisons of samples to be made in a single iteration of
identifying within sampling occasion recaptures, where the notation (3 ) indicates x choose y. Of these
pairwise comparisons, 250 x (%) =250 are pairs of full siblings, requiring a target full-sibling pairwise
comparison non-match call accuracy rate of 1/250=0.004 to avoid making at least one expected false
full-sibling match call. Furthermore, particularly with non-invasive genetic sampling such as hair or
scat collection, larger marker panels may be warranted given that negative PCR outcomes will often
reduce the number of loci with common positive genotype calls when comparing a pair of multilocus
genotypes. For example, even with high-quality tissue biopsy samples for the walrus case study, most
recapture samples had fewer loci with positive genotype calls than the full complement of loci available
(table 4).

Genetic mark-recapture provides substantial advantages in the field by allowing cryptic or hard-
to-handle taxa to be sampled; however, this benefit comes at the cost of having to infer recapture
events from genotypes with genotyping errors as opposed to directly observing recaptures in traditional
physical- or image-based recapture studies. To facilitate design of genetic mark-recapture studies and to
assess whether a given genetic marker panel and field design are sufficient to produce acceptable mark-
recapture modelling performance, we suggested a protocol to simulate mark-recapture inferences based
on identification of recaptures with error-prone genotypes. Using parameters drawn from a specific
marker panel, analysts can simulate genotypes under genotyping error and assess match calling and
sample clustering performance. Simulation results indicate the frequency of false recaptures and missed
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recapture outcomes as a function of genotyping error rate, sample size and recapture rate anticipated
for a given genotyping and field sampling design (e.g. electronic supplementary material, S2 and S3).
Alternatively, less involved though potentially less precise, match and non-match call accuracy rates
from simulation results presented in figures 1 and 2 (also see electronic supplementary material, S5)
can be multiplied by the number of pairwise comparisons needed to complete sample clustering for
sample sizes and recapture rates anticipated with a given field design in order to predict the incidence
of false recaptures and missed recaptures. Subsequently, the expected false recapture and missed
recapture rates can be incorporated into simulations of mark-recapture estimation to assess the impact
of the anticipated recapture identification error rates on key parameters of interest, such as estimated
abundance (e.g. [4,22,23]). Should biases in mark-recapture parameter estimates introduced by recapture
errors be found to be unacceptable, analysts could repeat the proposed simulation process by exploring
different options to improve recapture identification from genotypes (e.g. replicate genotyping to reduce
genotyping error or inclusion of additional loci).

A pragmatic challenge in implementing this match calling and sample clustering protocol is that
computational cost can be high when loci have high allelic richness. For example, evaluation of the
likelihood of a given relationship state for a pair of diploid genotypes requires summation of calculations

2
over all possible unordered pairs of latent genotypes, which for a single locus is equal to [(”/;rl)] .
With 20 loci each with 20 alleles, this equates to 882 000 sums for evaluation of a single relationship state
hypothesis for one multilocus genotype pair comparison. Based solely on a criterion of computation cost,
biallelic SNP markers have a considerable advantage over MSAT markers with higher allelic richness,
in that a total of only nine sums per biallelic locus need be made in comparing a pair of multilocus
genotypes. Regardless, to speed up the clustering algorithm to group samples into putative recapture
sets, it may be helpful to include a bypass point to avoid comparing multilocus genotypes which have a
high number of discrepant genotype calls across loci and thus would have very low probability of having
come from the same individual (e.g. [12,15,24]). We caution, however, that in using such an approach, a
conservative loci-mismatch threshold be utilized to avoid introducing missed recapture errors by failing
to identify recapture pairs which by chance exhibited a large number of genotyping errors (cf. [12]).

As genomic techniques advance, the development and genotyping costs for large marker panels will
continue to decrease (e.g. [25,26]). MSAT marker panels performed well in simulation trials; however,
SNPs are computationally more efficient during the match calling and sample clustering protocol. We
anticipate increasingly large panels of SNPs or similar markers will be available, enabling arbitrarily high
match call accuracy and subsequent recapture history reconstruction using error-tolerant likelihood-
based match calling and sample clustering algorithms, although computational efficiency will present
challenges as genotyping data increases in volume.

Data accessibility. R code to support simulation and case study analyses, and genetic marker information to support case
study results in this article have been uploaded as part of the electronic supplementary material. Primary walrus
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